/* $NetBSD: sha2.c,v 1.18 2009/06/25 14:05:18 joerg Exp $ */ /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */ /* * sha2.c * * Version 1.0.0beta1 * * Written by Aaron D. Gifford * * Copyright 2000 Aaron D. Gifford. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include #include #include "xbps_api.h" /*** SHA-256 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ static void SHA256_Transform(SHA256_CTX *, const uint32_t*); static int SHA256_Final(uint8_t *, SHA256_CTX *); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const uint32_t K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ static const uint32_t sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /*** SHA-256: *********************************************************/ int SHA256_Init(SHA256_CTX *context) { if (context == NULL) return 1; memcpy(context->state, sha256_initial_hash_value, (size_t)(SHA256_DIGEST_LENGTH)); memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); context->bitcount = 0; return 1; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ W256[j] = be32toh(*data); \ ++data; \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ static void SHA256_Transform(SHA256_CTX *context, const uint32_t *data) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, *W256; int j; W256 = (uint32_t *)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void SHA256_Transform(SHA256_CTX *context, const uint32_t *data) { uint32_t a, b, c, d, e, f, g, h, s0, s1; uint32_t T1, T2, *W256; int j; W256 = (uint32_t *)(void *)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { W256[j] = be32toh(*data); ++data; /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ int SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return 1; } usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ memcpy(&context->buffer[usedspace], data, (size_t)(freespace)); context->bitcount += freespace << 3; len -= freespace; data += freespace; SHA256_Transform(context, (uint32_t *)(void *)context->buffer); } else { /* The buffer is not yet full */ memcpy(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return 1; } } /* * Process as many complete blocks as possible. * * Check alignment of the data pointer. If it is 32bit aligned, * SHA256_Transform can be called directly on the data stream, * otherwise enforce the alignment by copy into the buffer. */ if ((uintptr_t)data % 4 == 0) { while (len >= SHA256_BLOCK_LENGTH) { SHA256_Transform(context, (const uint32_t *)(const void *)data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } } else { while (len >= SHA256_BLOCK_LENGTH) { memcpy(context->buffer, data, SHA256_BLOCK_LENGTH); SHA256_Transform(context, (const uint32_t *)(const void *)context->buffer); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } } if (len > 0) { /* There's left-overs, so save 'em */ memcpy(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; return 1; } static int SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len) { uint32_t *d = (void *)digest; unsigned int usedspace; size_t i; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != NULL) { usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); context->bitcount = htobe64(context->bitcount); if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ memset(&context->buffer[usedspace], 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH - usedspace)); } else { if (usedspace < SHA256_BLOCK_LENGTH) { memset(&context->buffer[usedspace], 0, (size_t)(SHA256_BLOCK_LENGTH - usedspace)); } /* Do second-to-last transform: */ SHA256_Transform(context, (uint32_t *)(void *)context->buffer); /* And set-up for the last transform: */ memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH)); } } else { /* Set-up for the last transform: */ memset(context->buffer, 0, (size_t)(SHA256_SHORT_BLOCK_LENGTH)); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], &context->bitcount, sizeof(context->bitcount)); /* Final transform: */ SHA256_Transform(context, (uint32_t *)(void *)context->buffer); for (i = 0; i < len / 4; i++) d[i] = htobe32(context->state[i]); } /* Clean up state data: */ memset(context, 0, sizeof(*context)); usedspace = 0; return 1; } static int SHA256_Final(uint8_t digest[], SHA256_CTX *context) { return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH); } /* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */ static const char sha2_hex_digits[] = "0123456789abcdef"; char * SHA256_End(SHA256_CTX *ctx, uint8_t *buffer) { uint8_t digest[SHA256_DIGEST_LENGTH], *d = digest; uint8_t *ret; int i; /* Sanity check: */ assert(ctx != NULL); if ((ret = buffer) != NULL) { SHA256_Final(digest, ctx); for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { *buffer++ = (uint8_t)sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = (uint8_t)sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char) 0; } else { (void)memset(ctx, 0, sizeof(SHA256_CTX)); } (void)memset(digest, 0, SHA256_DIGEST_LENGTH); return (char *)ret; }